Zinc Chelation Reduces Hippocampal Neurogenesis after Pilocarpine-Induced Seizure

نویسندگان

  • Jin Hee Kim
  • Bong Geom Jang
  • Bo Young Choi
  • Lyo Min Kwon
  • Min Sohn
  • Hong Ki Song
  • Sang Won Suh
چکیده

Several studies have shown that epileptic seizures increase hippocampal neurogenesis in the adult. However, the mechanism underlying increased neurogenesis after seizures remains largely unknown. Neurogenesis occurs in the subgranular zone (SGZ) of the hippocampus in the adult brain, although an understanding of why it actively occurs in this region has remained elusive. A high level of vesicular zinc is localized in the presynaptic terminals of the SGZ. Previously, we demonstrated that a possible correlation may exist between synaptic zinc localization and high rates of neurogenesis in this area after hypoglycemia. Using a lithium-pilocarpine model, we tested our hypothesis that zinc plays a key role in modulating hippocampal neurogenesis after seizure. Then, we injected the zinc chelator, clioquinol (CQ, 30 mg/kg), into the intraperitoneal space to reduce brain zinc availability. Neuronal death was detected with Fluoro Jade-B and NeuN staining to determine whether CQ has neuroprotective effects after seizure. The total number of degenerating and live neurons was similar in vehicle and in CQ treated rats at 1 week after seizure. Neurogenesis was evaluated using BrdU, Ki67 and doublecortin (DCX) immunostaining 1 week after seizure. The number of BrdU, Ki67 and DCX positive cell was increased after seizure. However, the number of BrdU, Ki67 and DCX positive cells was significantly decreased by CQ treatment. Intracellular zinc chelator, N,N,N0,N-Tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), also reduced seizure-induced neurogenesis in the hippocampus. The present study shows that zinc chelation does not prevent neurodegeneration but does reduce seizure-induced progenitor cell proliferation and neurogenesis. Therefore, this study suggests that zinc has an essential role for modulating hippocampal neurogenesis after seizure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline

Acute seizures after a severe brain insult can often lead to epilepsy and cognitive impairment. Aberrant hippocampal neurogenesis follows the insult but the role of adult-generated neurons in the development of chronic seizures or associated cognitive deficits remains to be determined. Here we show that the ablation of adult neurogenesis before pilocarpine-induced acute seizures in mice leads t...

متن کامل

Altered axon initial segment in hippocampal newborn neurons, associated with recurrence of temporal lobe epilepsy in rats

Hippocampal neurogenesis in temporal lobe epilepsy (TLE) may result in alteration of the excitability of neurons, which contributes to spontaneous recurrent seizures. Axon initial segment (AIS) structural and functional plasticity is important in the control of neuronal excitability. It remains to be elucidated whether the plasticity of AIS occurs in hippocampal newly‑generated neurons that are...

متن کامل

Aberrant seizure-induced neurogenesis in experimental temporal lobe epilepsy.

Neurogenesis in the hippocampal dentate gyrus persists throughout life and is increased by seizures. The dentate granule cell (DGC) layer is often abnormal in human and experimental temporal lobe epilepsy, with dispersion of the layer and the appearance of ectopic granule neurons in the hilus. We tested the hypothesis that these abnormalities result from aberrant DGC neurogenesis after seizure-...

متن کامل

P ilocarpine - induced status epilepticus increases cell proliferation in the dentate gyrus of adult rats via a 5 - HT receptor - dependent 1 A mechanism *

The dentate gyrus continues to produce granule neurons throughout life. Mossy fibers, the axons of granule neurons, undergo atypical sprouting in both clinical and experimental mesial temporal lobe epilepsy. Mossy fiber sprouting (MFS) has been hypothesized to underlie the network reorganization that is thought to produce spontaneously recurring seizures, possibly via the formation of new recur...

متن کامل

Lovastatin reduces neuronal cell death in hippocampal CA1 subfield after pilocarpine-induced status epilepticus: preliminary results.

OBJECTIVE To further characterize the capacity of lovastatin to prevent hippocampal neuronal loss after pilocarpine-induced status epilepticus (SE) METHOD: Adult male Wistar rats were divided into four groups: (A) control rats, received neither pilocarpine nor lovastatin (n=5); (B) control rats, received just lovastatin (n=5); (C) rats that received just pilocarpine (n=5); (D) rats that receive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012